Search results for " SIL."

showing 10 items of 1630 documents

Kopolimery olefin z alkenylosilseskwioksanami

2016

Artykuł stanowi przegląd literatury dotyczącej syntezy i charakterystyki materiałów hybrydowych uzyskanych na drodze kopolimeryzacji alkenylopodstawionych silseskwioksanów z olefinami. Przedstawiono przykłady wykorzystania m.in. procesów kopolimeryzacji koordynacyjnej do syntezy kopolimerów olefin i silseskwioksanów (POSS). Jednocześnie wskazano korzyści płynące z obecności POSS w strukturze polimeru, które przekładają się na jego zwiększoną odporność termiczną oraz parametry mechaniczne.

(ko)polimeryzacja koordynacyjnamateriały hybrydowekompleksy metalocenowenienasycone silseskwioksanyPOSS
researchProduct

Structural and morphological characterization of the Cd-rich region in Cd1-xZnxO thin films grown by atmospheric pressure metal organic chemical vapo…

2019

Abstract We have analysed the growth, morphological and structural characterization of Cd1-xZnxO thin films grown on r-sapphire substrates by atmospheric pressure metal organic chemical vapour deposition, mainly focusing on the Cd-rich rock-salt phase for its promising optical and technological applications. The evolution of the surface morphology and crystalline properties as a function of Zn content has been studied by means of high resolution x-ray diffraction and electron microscopy techniques. Monocrystalline (002) single-phase cubic films were obtained with Zn contents up to 10.4%, and with a low density of dislocations as a consequence of the optimized crystal growth process. Particu…

010302 applied physicsMaterials scienceAtmospheric pressureAlloyMetals and AlloysCrystal growth02 engineering and technologySurfaces and InterfacesChemical vapor depositionengineering.material021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMonocrystalline siliconChemical engineeringPhase (matter)0103 physical sciencesMaterials ChemistryengineeringThin film0210 nano-technologyWurtzite crystal structureThin Solid Films
researchProduct

Performance evaluation and stability of silicide-based thermoelectric modules

2020

Abstract Long-term studies on thermoelectric generators based on N-type magnesium silicide (Mg2.01Si0.49Sn0.5Sb0.01) and P-type higher manganese silicide (Mn0.98Mo0.02Si1.73Ge0.02) materials are presented, in the operating temperature range of 200 °C–400 °C. Emphasis is put on the performance and reliability of the current collector configuration, especially on the hot side of the module, and on the thermomechanical stresses that are created during operation and lifetime testing as a result of large temperature gradients experienced across the thermoelectric legs. With silver (Ag) paste as contact material, the long term-stability of the uni-couples was carried out on non-metalized legs and…

010302 applied physicsMaterials scienceOpen-circuit voltage02 engineering and technologyInternal resistanceCurrent collector021001 nanoscience & nanotechnologyMagnesium silicide01 natural sciencesIsothermal processVDP::Teknologi: 500::Elektrotekniske fag: 540chemistry.chemical_compoundThermoelectric generatorchemistry0103 physical sciencesThermoelectric effectSilicideComposite material0210 nano-technology
researchProduct

Optimization of physicochemical and optical properties of nanocrystalline TiO 2 deposited on porous silicon by metal-organic chemical vapor depositio…

2020

International audience; Titanium dioxide (TiO2) is very employed in solar cells due to its interesting physicochemical and optical properties allowing high device performances. Considering the extension of applications in nanotechnologies, nanocrystalline TiO2 is very promising for nanoscale components. In this work, nanocrystalline TiO2 thin films were successfully deposited on porous silicon (PSi) by metal organic chemical vapor deposition (MOCVD) technique at temperature of 550°C for different periods of times: 5, 10 and 15 min. The objective was to optimize the physicochemical and optical properties of the TiO2/PSi films dedicated for photovoltaic application. The structural, morphologi…

010302 applied physicsMaterials sciencePolymers and PlasticsMetals and Alloys02 engineering and technologyChemical vapor deposition021001 nanoscience & nanotechnologyPorous silicon01 natural sciences7. Clean energyNanocrystalline materialSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBiomaterialsMetalChemical engineeringvisual_art0103 physical sciencesvisual_art.visual_art_medium[INFO]Computer Science [cs]Metalorganic vapour phase epitaxy0210 nano-technology[CHIM.CHEM]Chemical Sciences/Cheminformatics
researchProduct

Validation of mathematical model for CZ process using small-scale laboratory crystal growth furnace

2018

The present material is focused on the modelling of small-scale laboratory NaCl-RbCl crystal growth furnace. First steps towards fully transient simulations are taken in the form of stationary simulations that deal with the optimization of material properties to match the model to experimental conditions. For this purpose, simulation software primarily used for the modelling of industrial-scale silicon crystal growth process was successfully applied. Finally, transient simulations of the crystal growth are presented, giving a sufficient agreement to experimental results.

010302 applied physicsMaterials scienceScale (ratio)Mechanical engineeringCrystal growth02 engineering and technology021001 nanoscience & nanotechnologycomputer.software_genre01 natural sciencesSimulation softwareMonocrystalline siliconScientific method0103 physical sciencesTransient (oscillation)0210 nano-technologyMaterial propertiescomputerIOP Conference Series: Materials Science and Engineering
researchProduct

3D modeling of growth ridge and edge facet formation in 〈100〉 floating zone silicon crystal growth process

2019

Abstract A 3D quasi-stationary model for crystal ridge formation in FZ crystal growth systems for silicon is presented. Heat transfer equations for the melt and crystal are solved, and an anisotropic crystal growth model together with a free surface shape solver is used to model the facet growth and ridge formation. The simulation results for 4″ and 5″ crystals are presented and compared to experimental ridge shape data.

010302 applied physicsMaterials scienceSiliconPhysics::Opticschemistry.chemical_elementCrystal growthGeometry02 engineering and technologyEdge (geometry)021001 nanoscience & nanotechnologyCondensed Matter PhysicsRidge (differential geometry)01 natural sciencesInorganic ChemistryMonocrystalline siliconCrystalchemistryCondensed Matter::SuperconductivityFree surface0103 physical sciencesMaterials ChemistryFacet0210 nano-technologyJournal of Crystal Growth
researchProduct

Mathematical modelling of the feed rod shape in floating zone silicon crystal growth

2017

Abstract A three-dimensional (3D) transient multi-physical model of the feed rod melting in the floating zone (FZ) silicon single-crystal growth process is presented. Coupled temperature, electromagnetic (EM), and melt film simulations are performed for a 4 inch FZ system, and the time evolution of the open melting front is studied. The 3D model uses phase boundaries and parameters from a converged solution of a quasi-stationary axisymmetric (2D) model of the FZ system as initial conditions for the time dependent simulations. A parameter study with different feed rod rotation, crystal pull rates and widths of the inductor main slit is carried out to analyse their influence on the evolution …

010302 applied physicsMaterials scienceSiliconbusiness.industryRotational symmetryTime evolutionPhase (waves)chemistry.chemical_element010103 numerical & computational mathematicsMechanicsCondensed Matter PhysicsRotation01 natural sciencesCondensed Matter::Soft Condensed MatterInorganic ChemistryMonocrystalline siliconCrystalOpticschemistry0103 physical sciencesMaterials ChemistryTransient (oscillation)0101 mathematicsbusinessJournal of Crystal Growth
researchProduct

Reduced temperature sensitivity of multicrystalline silicon solar cells with low ingot resistivity

2016

This study presents experimental data on the reduction of temperature sensitivity of multicrystalline silicon solar cells made from low resistivity ingot. The temperature coefficients of solar cells produced from different ingot resistivities are compared, and the advantages of increasing the net doping are explained.

010302 applied physicsMaterials scienceTemperature sensitivityintegumentary systemSiliconDopingMetallurgytechnology industry and agriculturefood and beverageschemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMonocrystalline siliconReduced propertieschemistryElectrical resistivity and conductivity0103 physical sciencesIngot0210 nano-technologySensitivity (electronics)2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)
researchProduct

Application of enthalpy model for floating zone silicon crystal growth

2017

Abstract A 2D simplified crystal growth model based on the enthalpy method and coupled with a low-frequency harmonic electromagnetic model is developed to simulate the silicon crystal growth near the external triple point (ETP) and crystal melting on the open melting front of a polycrystalline feed rod in FZ crystal growth systems. Simulations of the crystal growth near the ETP show significant influence of the inhomogeneities of the EM power distribution on the crystal growth rate for a 4 in floating zone (FZ) system. The generated growth rate fluctuations are shown to be larger in the system with higher crystal pull rate. Simulations of crystal melting on the open melting front of the pol…

010302 applied physicsMaterials scienceTriple pointPhysics::OpticsCrystal growth02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesMolecular physicsInorganic ChemistryCrystalMonocrystalline siliconCrystallographyCondensed Matter::Superconductivity0103 physical sciencesMaterials ChemistryLaser-heated pedestal growthCrystalliteGrowth rate0210 nano-technologySeed crystalJournal of Crystal Growth
researchProduct

Experimental and numerical investigation of laboratory crystal growth furnace for the development of model-based control of CZ process

2019

Abstract The presented study is focused on laboratory Czochralski crystal growth experiments and their mathematical modelling. The developed small-scale CZ crystal growth furnace is described as well as the involved automation systems: crystal radius detection by image recognition, temperature sensors, adjustable heater power and crystal pull rate. The CZ-Trans program is used to model the experimental results – transient, 2D axisymmetric simulation software primarily used for modelling of the industrial-scale silicon crystal growth process. Poor agreement with the experimental results is reached; however, the proven ability to perform affordable, small-scale experiments and successfully mo…

010302 applied physicsMaterials sciencebusiness.industryProcess (computing)Mechanical engineeringCrystal growth02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physicscomputer.software_genreProcess automation system01 natural sciencesAutomationSimulation softwareInorganic ChemistryCrystalMonocrystalline silicon0103 physical sciencesMaterials ChemistryTransient (oscillation)0210 nano-technologybusinesscomputerJournal of Crystal Growth
researchProduct